Comparison and Anti-concentration Bounds for Maxima of Gaussian Random Vectors

نویسندگان

  • VICTOR CHERNOZHUKOV
  • KENGO KATO
چکیده

Slepian and Sudakov-Fernique type inequalities, which compare expectations of maxima of Gaussian random vectors under certain restrictions on the covariance matrices, play an important role in probability theory, especially in empirical process and extreme value theories. Here we give explicit comparisons of expectations of smooth functions and distribution functions of maxima of Gaussian random vectors without any restriction on the covariance matrices. We also establish an anti-concentration inequality for maxima of Gaussian random vectors, which derives a useful upper bound on the Lévy concentration function for the maximum of (not necessarily independent) Gaussian random variables. The bound is universal and applies to vectors with arbitrary covariance matrices. This anti-concentration inequality plays a crucial role in establishing bounds on the Kolmogorov distance between maxima of Gaussian random vectors. These results have immediate applications in mathematical statistics. As an example of application, we establish a conditional multiplier central limit theorem for maxima of sums of independent random vectors where the dimension of the vectors is possibly much larger than the sample size.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Upper Bounds on the Height Diierence of the Gaussian Random Field and the Range of Random Graph Homomorphisms into Z

Bounds on the range of random graph homomorphism into Z, and the maximal height diierence of the Gaussian random eld, are presented.

متن کامل

Lp moments of random vectors via majorizing measures

For a random vector X in Rn, we obtain bounds on the size of a sample, for which the empirical p-th moments of linear functionals are close to the exact ones uniformly on a convex body K ⊂ Rn. We prove an estimate for a general random vector and apply it to several problems arising in geometric functional analysis. In particular, we find a short Lewis type decomposition for any finite dimension...

متن کامل

Upper bounds on the height difference of the Gaussian random field and the range of random graph homomorphisms into Z

Bounds on the range of random graph homomorphism into Z, and the maximal height difference of the Gaussian random field, are presented.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013